
ASDF 3 TUTORIAL
Building CL Code: How? What? Why?

François-René Rideau
Google

Cambridge, MA

European Lisp Symposium, June 4th 2013

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

Build system

I transform source (for humans) into binary (for machine)
I a bit like make for C

I enable division of labor
I divide the source into separate components
I multiple people can collaborate, each making changes to a few

components
I people in di�erent teams, in same team, in same cranium.

I system: CL name for top-level unit of software management
I In other languages they are called: library, package, module,

bean, egg, class, archive. . .

I Challenges:
I Con�guration: �nd where is each �le needed
I Dependencies: build things in correct order
I Incrementality: re-build i� changed

No build system

I What a manual load �le might look like,
this-software-loader.lisp

(load #p"/path/to/library1.lisp")

(defparameter *library2-directory* #p"/path/to/library2/")

(load (merge-pathnames #p"source/loader.lisp"

library2-directory))

(setf (logical-pathname-translations "LIBRARY3")

`(("**;*.*.*" #p"/path/to/library3/*.*")))

(load #p"LIBRARY3:load-library3.lisp")

(load (compile-file

(merge-pathnames "file1.lisp"

this-software-directory)))

(load (compile-file

(merge-pathnames "file2.lisp"

this-software-directory)))

(load (compile-file

(merge-pathnames "file3.lisp"

this-software-directory)))

Previous example with ASDF

I File this-software.asd

(defsystem this-software

:depends-on (library1 library2 library3)

:components

((:file "file1")

(:file "file2" :depends-on "file1")

(:file "file3" :depends-on "file1")))

Solved by ASDF

I Can �nd libraries w/o speci�c con�guration

I Can �nd �les inside library w/o extra con�guration

I Con�guration is done separately and uniformly

I dependencies: �ner information is captured

I incrementality: only build what's needed

I more: portability, extensibility, etc.

ASDF descends from DEFSYSTEM

I build system: compile source �les

I specialized: oriented toward CL software
I not geared for arbitrary tasks with dependencies

I in image: also load software
I totally unlike either make
I maintain long-lived system state

I declarative: describe system dependencies
I not imperative instructions on how to build
I got more declarative as DEFSYSTEM grew older

Lisp build system history
I 196x: Manual load scripts
I 197x: Lisp Machine DEFSYSTEM

I Chine Nual: components and manual rules

I 198x: kmp's MIT AI Memo 801, rer's MIT AI TR 874.
I 198x: Symbolics SCT

I very elaborate, proprietary

I 1991: MK-DEFSYSTEM. 3.6i: 218kB.
I free, portable, but complex, feature poor, not extensible

I 199x: also defsystem of Allegro, LispWorks
I 2002: ASDF, by Dan Barlow et al. 1.85: 38kB. 1.369: 77kB.

I con�gurable, extensible, semi-portable.

I 2010: ASDF2, by Faré et al. 2.000: 138kB. 2.26: 198kB.
I robust, portable, usable, upgradable
I See �Evolving ASDF: More Cooperation, Less Coordination�

I 2013: ASDF 3, by Faré. 2.27: 409kB. 3.0.1: 459kB.
I Fix 30-year old bug by making design coherent, new features

I Future: ASDF 4? quick-build? XCVB? Racket?

ASDF Features

I A simpler, better replacement for MK-DEFSYSTEM

I Use CLOS, don't support obsolete platforms
I focus on SBCL and Unix
I ported to a handful other implementations

I Inter-system con�guration: �nd systems though
central-registry

I No need to edit a �le for every system any more!
I Typically, �symlink farms� � but Unix speci�c

I Intra-system con�guration: none needed, use TRUENAME
I Brilliant key idea establishes ASDF dominance

I Extensibility: use of CLOS to model dependencies
I Example in SB-GROVEL

ASDF success

I Its con�guration mechanism was a brilliant innovation
I Before you laugh, compare to autotools, pkgcon�g, etc.

I Extensible CLOS model also innovative, but not fully
understood

I Not by me until I rewrote it, not by Dan Barlow himself.
I In many ways, a discovery, not an intentional design.

I Became de facto standard
I quicklisp: over 700 libraries

I Now a key piece of community infrastructure

I Therefore cursed with backward-compatibility
I if it's not backward. . .

ASDF 1 issues

I Many shortcomings:
I Not very portable
I Pathnames horror
I A lot of bugs outside the common case
I No standard way to load it

I Yet development stalled:
I Users wait for new version before to rely on features / bug �xes

I Implementers wait for users to demand new version before to
change and break compatibility

I Some distributions pre-package CL with ASDF pre-loaded,
others don't

I If an old one is pre-loaded, it's too late to upgrade with a
version with bugs �xed

ASDF 2 Features

I Hot-upgradable: reverse incentive so development can
happen

I Portable: 15 implementations, 4 OSes

I Robust: Massive bug �xes
I Massive cleanup of internals. Pathname hell. Corner cases.

I Faster: Don't use lists when inappropriate
I Can now scale to thousands of �les

I Con�gurable: by end-users, not just developers
I Domain-Speci�c Language for better con�guration
I Modular update of con�guration

I Usable: a whole lot of small missing features
I (asdf:load-system :foo) instead of (asdf:operate

'asdf:load-op 'foo)

I load-system test-system require-system

I :defsystem-depends-on :force-not :encodings

:around-compile :compile-check

ASDF 3 Features

I Complete refactoring, �xed deep conceptual bugs.

I Deliver your system(s)
I as single fasl (fasl-op)

I as single lisp source �le (concatenate-source-op)

I as an executable program (program-op), with runtime hooks

I Portability: new library UIOP, includes RUN-PROGRAM

I Condition Control: mu�e warnings, keep deferred warnings

I naming: multiple systems in foo.asd: foo/bar, foo/baz

I more: :if-feature build-op force

precompiled-system...

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

What ASDF does

I Compile and load Lisp code in current image

I Locates software based on con�guration

I Provide extensible object model to developers

What ASDF does not

I Download code (but quicklisp does)

I Solve version hell (only checks as speci�ed)

I Build non-Lisp stu� (awkward)

Example minimal ASDF session

(require :asdf)

(asdf:load-system :inferior-shell)

(in-package :inferior-shell)

(run `(pipe (echo ,(* 90 137)) (tr "1032" "HOLE")))

;; More:

(run `(grep "Mem" "/proc/meminfo") :output :lines)

(asdf:test-system :inferior-shell)

Using ASDF, the safe way

;; CLISP alone won't accept :asdf

(require "asdf")

;; active implementations provide ASDF2 or later

#-asdf2 (error "You lose")

;; force ASDF2 to upgrade to your installed ASDF3

(asdf:load-system :asdf)

Using ASDF, the hard way

I see slime/contrib/swank-asdf.lisp
I tries hard when the implementation doesn't provide ASDF.

I Even harder: see lisp/setup.lisp from quux (to be
published)

I con�gure asdf, twice, to work around cases of unsmooth
upgrade.

Using CL-Launch from command-line

cl-launch -s this-software -i '(this-software:main)' \

-- arg1 arg2

Using CL-Launch from script

#!/bin/sh

":" ; DIR="$(cd $(basename "$0");pwd)" #|

exec cl-launch -l ccl -S "$DIR//:" -i "$0" -- "$@"

exit |#

(some lisp code)

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

How to con�gure ASDF

I Source Registry

I Output Translations

I Optimization, verbosity, etc.

Default Installation Paths

I No need to con�gure if you use defaults
I ~/.local/share/common-lisp/source/

I /usr/local/share/common-lisp/source/

I /usr/share/common-lisp/source/

I FASLs under ~/.cache/common-lisp/

Source Registry, via con�g �le

I ~/.config/common-lisp/source-registry.conf

(:source-registry

(:directory "/myapp/src")

(:tree "/home/tunes/cl")

:inherit-configuration)

I Unlike ASDF 1, forgiving of no �nal /

Source Registry, via modular con�g �le

I

~/.config/common-lisp/source-registry.conf.d/my.conf

(:directory "/myapp/src")

Source Registry, via environment

export CL_SOURCE_REGISTRY=/myapp/src/:/home/tunes/cl//:

Source Registry, via Lisp evaluation

(asdf:initialize-source-registry

`(:source-registry

(:directory ,appdir)

(:tree ,librootdir)

:inherit-configuration))

Old Style central registry

I (pushnew #p"/myapp/src/" asdf:*central-registry*

:test 'equal)

I Catch: ASDF 1 was unforgiving if you forgot the trailing /

I Magic: argument actually evaluated.

I ASDF 2 has asdf::getenv, now uiop:getenv

I No portable place to do it with ASDF 1.
I e.g. ~/.sbclrc on SBCL.

I source-registry can be con�gured in a decentralized way
I Each can specify what he knows,
I none need specify what he doesn't

Output Translations

I Where is the fasl for foo.lisp ?

I Multiple implementations and variants may use the same name

I Allegro 9.0 SMP vs Allegro 9.0 normal
I SBCL 1.1.0 vs SBCL 1.1.8
I SBCL 1.1.0 x86 vs SBCL 1.1.8 x8664

I Many ASDF1 extensions to move FASLs away, but hard to
con�gure

I No consensus solution on where to put things

I /src/foo.fasl
I

~/.cache/common-lisp/acl-9.0-linux-x86/src/foo.fasl

I

~/.cache/common-lisp/sbcl-1.1.8-linux-x64/src/foo.fasl

Output Translations, via con�g �le

I

~/.config/common-lisp/asdf-output-translations.conf

(:output-translations

(t (,cache-root :implementation))

:ignore-inherited-configuration)

Output Translations, via modular con�g �le

I ~/.config/common-lisp/

I asdf-output-translations.conf.d/foo.conf

("/myapp/src/" ("/var/clcache" :implementation "myapp/src"))

Output Translations

I export

ASDF_OUTPUT_TRANSLATIONS=/:/some/cache/dir/:

(asdf:initialize-output-translations

`(:output-translations

(t (,cache-root :implementation))

:ignore-inherited-configuration))

Output Translations, $PWD/sbcl-1.2-x86/foo.fasl

(asdf:initialize-output-translations

`(:output-translations

(t (:root :**/ :implementation :*.*.*))

:ignore-inherited-configuration))

Using quicklisp and clbuild

I (load "quicklisp/setup.lisp") does it all

I I'm not sure about clbuild � use the source-registry

How do I �nd a library?

I Just use quicklisp

I Google it, search Cliki, cl-user.net

I Ask the community, e.g. irc.freenode.net #lisp

Where do I download it?

I Just use quicklisp

I To some place in your source-registry

I zero conf: ~/.local/share/common-lisp/source/

Build script

I Optimizations: (declaim (optimize ...)

I Parameters: (setf *compile-verbose* nil)

I easy build script: sbcl --load build.lisp

I For portability, use cl-launch as above

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

Creating Basic ASDF Systems

I foo.asd

(asdf:defsystem foo

:components

((:file "foo")))

Depending on other systems

I foo.asd

(defsystem foo

:depends-on (:alexandria :cl-ppcre)

:components

((:file "foo")))

Multiple �les

I foo.asd

(defsystem foo ...

:components

((:file "pkgdcl")

(:file "foo" :depends-on ("pkgdcl"))

(:file "bar" :depends-on ("pkgdcl"))))

Typical small system

I foo.asd

(defsystem foo ...

:components

((:file "pkgdcl")

(:file "specials" :depends-on ("pkgdcl"))

(:file "macros" :depends-on ("pkgdcl"))

(:file "utils" :depends-on ("macros"))

(:file "runtime" :depends-on ("specials" "macros"))

(:file "main" :depends-on ("specials" "macros"))))

Bigger system: divided in modules

(defsystem foo ...

:components

((:module "base"

:components ...)

(:module "runtime"

:depends-on ("base")

:components ...)

...))

Logical Modules, same directory

(defsystem foo ...

:components

((:module "base"

:pathname ""

:components ...)

...))

Pathname override

(:file "foo/bar")

(:file "foo" :pathname "../sibling-dir/foo")

(:file "foo" :pathname #p"../sibling-dir/foo.LiSP")

Sibling directories

(:file "../sibling-dir/foo")

(:module "../sibling-dir/foo")

(:file "foo" :pathname "../sibling-dir/foo")

(:file "foo" :pathname #p"../sibling-dir/foo.LiSP")

Punting on �ne-grained dependencies

(defsystem foo

:serial t

:components

((:file "pkgdcl")

...

(:file "main")))

Serial Dependencies

I Scope of :serial t is the current module or system

I not its submodules or systems.

I You can easily nest serial / parallel dependencies

Explicit Dependencies

I :depends-on ("foo" "bar/baz" "quux")

Good Style

I No in-package

I Only defsystem forms for foo, foo/bar

I Any classes, methods from :defsystem-depends-on

I No other methods, no side-e�ect, no pushing features

Other �les in a project

I README, LICENSE, TODO, .git, etc.

I Using quickproject
I Automatically create the skeleton

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

Distinct namespaces

I find-package vs find-system

I A system may or may not de�ne a package of same name

Strategy 1: one package per system

I The traditional way

I system foo, package foo

I system cl-foo, package foo (yuck)

I system cl-foo, package cl-foo

I �le pkgdcl.lisp or package.lisp

Strategy 1b: one package per subsystem

I Whether you subsystem is a second system or a module

I system foo, system foo/bar

I see iolib

Strategy 2: interface vs implementation package

I package foo, package foo-impl

I same system foo, or

I two systems foo/interface and foo/implementation

I See cl-protobufs

Strategy 3: one package per �le

I More discipline, reduces mess

I dependencies implicit from defpackage

I See source code of ASDF 3 itself

I faslpath, quick-build use it for dependencies!
I if you :use or :import-from a package, load it �rst

uiop:define-package vs defpackage

I Part of UIOP, new in ASDF 3

I Works well with hot-upgrade

I Automation common patterns:
I (:mix "foo" "bar")
I (:reexport "foo" "bar")

.asd �le syntax

I ASDF 3: now read in UTF-8 encoding, not :default

I ASDF 3: Now read in package ASDF-USER, not a temporary
package

I Compatibility: NOT binding *readtable* and
print-pprint-dispatch

I Deprecated: arbitrary code in .asd �le

I Recommended: only calls to defsystem, use
:defsystem-depends-on

ASDF-USER

I Issue: avoid name con�ict issues between .asd �les

I Old ASDF 1 & 2 read each �le in its own temporary package

I ASDF 3 now all reads them in a common package ASDF-USER

I ASDF-USER :use's ASDF and UIOP/PACKAGE

I Not UIOP due to con�ict with RUN-PROGRAM in SB-GROVEL

I ASDF is not the right place for this �innovation�
I If you're CL programmer, you know your package discipline
I If you don't know your package discipline, you're screwed

anyway

Best package practice

I No need for (in-package :asdf) in your .asd �le

I Read in shared namespace ASDF-USER � usual discipline
applies

I If you bind new symbols, use DEFPACKAGE �rst.

I On ASDF 3, it :use's UIOP/PACKAGE for its DEFINE-PACKAGE

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

Using Extensions: CFFI Grovel

(defsystem foo

:defsystem-depends-on (:cffi-grovel)

:depends-on (:cffi)

:components

((:cffi-grovel-file "c-prototypes")

(:file "lisp-code" :depends-on ("c-prototypes"))))

Character encoding, since 2.21

(defsystem foo

:encoding :latin1

:components

((:file "pkgdcl" :encoding :utf-8)

(:module "russian" :encoding :iso-8859-5

:components ((:file "bar" :encoding :koi8-r) ...))))

I *default-encoding* is now :utf-8 since 2.31

I a boon for most programs, work predictably

I breaks a handful on unmaintained packages in quicklisp

Finalizers, since 2.23

(defsystem :asdf-finalizers-test

:defsystem-depends-on (:asdf-finalizers)

:around-compile

"asdf-finalizers:check-finalizers-around-compile"

:depends-on (:list-of :fare-utils :hu.dwim.stefil)

:components ((:file "asdf-finalizers-test")))

I list-of:

(defun foo (l)

(check-type l (list-of string)))

(asdf-finalizers:final-forms)

POIU

I (asdf:load-system :poiu)

I (asdf:load-system :this-software)

I Compile in a fork, load in current image.
I Replay compilation errors in current image

I antifuchs 2007-2008: build ASDF systems in parallel

I fare 2009-2013: robust, portable, integrated to ASDF

I Deterministic by default given initial state
I Faster option: more parallelism

I Can fork on SBCL, Single-threaded CCL, CLISP, ACL
I Graceful fallback if no forking.

I Handle deferred warnings

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

Components, Operations, Actions

I COMPONENT's describe your source code
I e.g. SYSTEM, CL-SOURCE-FILE, MODULE

I OPERATION's are stages of processing to perform on
components

I e.g. COMPILE-OP, LOAD-OP

I An ACTION is a pair of an OPERATION and a COMPONENT
I e.g. (cons (find-operation () 'load-op)

(find-component "this-software" "file1"))

I The dependency graph is a direct acyclic graph of ACTION's
I It is not a graph of components that depend on each other.

Plan �rst, then perform

I OPERATE calls TRAVERSE then PERFORM-PLAN
I Factoring out PERFORM-PLAN was a recent change before

ASDF 3.

I TRAVERSE walks the dependency graph and returns a plan
I Traditionally, a LIST of actions to perform in order
I Can be overridden. POIU returns a representation of the

complete graph.

I PERFORM-PLAN walks the plan calling
PERFORM-WITH-RESTARTS on each ACTION

I PERFORM-WITH-RESTARTS sets up proper restarts and calls
PERFORM

The graph is computed by COMPONENT-DEPENDS-ON

I Misnamed: actions, not components, have dependencies.

I Arguments: an operation designator, component designator
I e.g. (COMPONENT-DEPENDS-ON 'LOAD-OP

'("this-software" "file2"))

I CLOS: OO multi-dispatch on two arguments!

I Return a list of lists of operation designator and component
designators

I e.g. ((#<LOAD-OP> #<CL-SOURCE-FILE "this-software"

"file1">))

I CLOS: don't forget to append the (call-next-method)
I we could have used the APPEND method combinator, but are

not,
I for historical backward compatibility reasons

I CLOS: inherit from mixins to achieve desired e�ects

I CLOS makes things very modular. Big win!

Component classes

I Usual classes

component

module

system

source-file

cl-source-file

cl-source-file.cl

cl-source-file.lsp

static-file

cffi-grovel-file

I Usual mixins

I parent-component, child-component

Typical component tree

system

cl-source-file-1

cl-source-file-2

module1

cl-source-file-3

cl-source-file-4

cl-source-file-5

Operation classes

I compile-op, load-op

I load-source-op

I new in ASDF 3: prepare-op, prepare-source-op

I Also new in ASDF3, bundle-op and friends:
I fasl-op, load-fasl-op

I monolithic-fasl-op, monolithic-load-fasl-op

I concatenate-source-op, load-concatenated-source-op

I program-op

I Typical operations mixins (ASDF 3):
I selfward-operation

I sideway-operation

I downward-operation

I upward-operation

Action Files

I OUTPUT-FILES: output-translations in an :AROUND method

I INPUT-FILES: automation in
COMPONENT-SELF-DEPENDENCIES

I An action is NEEDED-IN-IMAGE-P i� its OUTPUT-FILES is nil
I Otherwise, it need not be PERFORM'ed again in current image if

�les up to date
I Important notion implicit in ASDF 1&2, introduced by POIU

I ASDF 3's TRAVERSE may visit an action twice
I once with NEEDED-IN-IMAGE-P NIL and oncep with it T

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

ASDF 2.26 was stable

I ASDF had been completely rewritten since ASDF 1
I Now made portable, robust, usable, etc.
I Everything had been touched except trivial things

I But core dependency traversal algorithm unchanged
I To �x bugs, refactored out of spaghetti code, but
I functionally equivalent, modulo bug �xes

I TRAVERSE was the holy relic passed by Dan Barlow
I I didn't grok the design, it felt slightly wrong.
I Couldn't change anything by fear of backward compatibility

I Remained only one bug to procrastinate on
I All other bugs were wishlist items made di�cult by current

design

Failure to propagate dependency changes

I lp#479522 changes fail to trigger a rebuild across systems
I explicitly disabled in TRAVERSE

I In olden days, some have argued for the former bug as a
�feature�

I It was only a crock to work around lack of :force-not

I When you enable the obvious �x, it only works in current
session

I system2 depends-on system1
I in one session, change system1, recompile it
I in another session, compile system2 that didn't change
I ASDF 1 and 2 fail to recompile system2

Not just between systems!

I More common failure mode:
I Use a stateful macro, such as DEFPACKAGE's :use
I have file1 de�ne the macro, file2 use it
I modify file1, file2 is not recompiled

I Other common failure mode:
I have �le1, �le2, �le3 with serial dependencies
I �le1 has changed, �le3 hasn't
I �le2 completely breaks the build
I you �x �le2, and restart the build
I ASDF 2 fails to recompile �le3

Decades Old Dependency Bugs

I Cause: ASDF only checked timestamp for �les of action
I Doesn't even try to propagate timestamp from dependencies!

lp#1087609

I Need-to-recompile may be propagated only from current
session

I Bug present in 1991 MK-DEFSYSTEM and the original 197X
DEFSYSTEM

I Optional �x in Symbolics, Allegro, LispWorks defsystem
I o�er a di�erent kind of dependencies than the default
I broken by default (backward compatibility?)

I not a complete �x in LispWorks

I Fixing the bug requires a complete rewrite of ASDF's
TRAVERSE

I Twice. Because then you �nd you need a correct dependency
model

I along which to correctly propagate timestamps.

Why never reported before?

I Usually not THAT big an issue
I Most Lispers hack on one small system at once.
I Usually you interactively use the CONTINUE restart after �xing

bug.
I When you change file1, you often need to change file3,

too, anyway.
I In doubt, you :force a build from clean or erase all the fasls.

I Now given in large systems built in batch with stateful
macros. . . Ouch.

I false positives and negatives waste time in building and testing
I uncontroled non-determinism in testing is bad
I Not your typical Lisp development style!

Live Programming vs Dead Programs

I Live Programming: code is mutable
I Short feedback �OODA� loop. Low overhead

(meta)computing.

I Dead Programs: code is immutable
I Easier to analyze before it's run. Too late to debug afterwards.

I Both matter for the same reason:
I programmer interaction is a scarce resource

I On-line, adj.: The idea that a human being should always be
accessible to a computer.

I Computing systems of the future should support both in
synergy.

I Live style to metaprogram dead style programs.
I Zombie programs that resurrect on-demand.

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

Solution: road to ASDF3
I Propagate timestamps

I This in turn necessitates a complete graph representation

I Introduce prepare-op
I This means refactoring downward propagation away from

TRAVERSE

I Refactor traverse and the operation classes
I This means reorganizing the source code

I Split the code into �les so it makes sense
I Implement monolithic-concatenate-source-op

I Merge in and �x the asdf-bundle infrastructure
I Recursively use new traverse to walk the partial plan for an

action
I It now makes sense to have a separate portability layer

I Implement UIOP, spend time making it a quality library

I Many cleanups and new features are now unlocked
I Spend a lot of time implementing them robustly

I Some new features are oh so slightly backward incompatible
I Spend a lot of time �ghting the community, and losing

PREPARE-OP

I introduced to �x a conceptual bug in the ASDF object model.

I �load the dependencies of a component and its parents�

I explicitly depends-on'ed by LOAD-OP and COMPILE-OP

I Propagates upward in the component hierarchy, not downward

I TRAVERSE special cases such dependencies no more

TRAVERSE was gutted out

I Not only bug �xes, but much simpler, sensible semantics
I Now propagating timestamps along a graph and that only
I Refactored into reusable higher-order functions and objects

I The object model now actually makes sense, and can be
extended

I No more implicit descending into children components
I Inherit from downward-operation for such propagation

I methods take a plan object, NIL for actual action
I Informed by interface-passing-style and experience with POIU

I Was necessary to get BUNDLE-OP right portably

I Many many thanks to antifuch's POIU

COMPONENT-DEPENDS-ON is now more powerful

I can express dependencies on arbitrary operation objects

I Supported: depend not just on siblings

I Supported: express arbitrary build graphs

I Deprecated: operations with di�erent options

I Deprecated: depending on component in other system

COMPONENT-DO-FIRST is no more

I It used to specify some dependencies that were skipped

I if no re-build was triggered based on local timestamps;

I ASDF 1 didn't let the users control it,

I ASDF 2 only let you control it since 2.017 or so.

I In ASDF 3, NEEDED-IN-IMAGE-P mechanism supersedes
COMPONENT-DO-FIRST

I COMPONENT-DEPENDS-ON is used for all dependencies.

I Use :in-order-to everywhere you used to use :do-first, if
ever.

IF-FEATURE

I new attribute of COMPONENT
I accepts an arbitrary feature expression
I e.g. :if-feature (:and :sbcl (:or :x86 :x86-64))

I Beware: no magic reading in keyword package � use : syntax

I Replaces the misguided :if-component-dep-fails attribute
of MODULE

I could not be salvaged when refactoring TRAVERSE

I Dropped that attribute and the accompanying :feature

feature
I Limited backward compatibility just for SB-GROVEL and co.

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

Performance

I ASDF3 �70% slower than ASDF2
I Slightly faster when *RESOLVE-SYMLINKS* is false (default

true)

I ASDF2 much faster than ASDF1: don't (ab)use LIST data
structures

I Underneath, ASDF3 does much more work, correctly

I Cache expensive computations in hash-table in dynamic
variable

One package per �le

I ASDF 3 was rewritten in the style of faslpath and
quick-build

I Each �le has its own DEFPACKAGE

I Actually uses UIOP/PACKAGE:DEFINE-PACKAGE for
hot-upgrade and reexport

I Future: actually support faslpath or quick-build
dependencies?

CONCATENATE-SOURCE-OP

I build a single Lisp �le from all the source in a system

I Variant MONOLITHIC-CONCATENATE-SOURCE-OP to transclude
dependencies

I Used by ASDF itself to split it in multiple �les
I ASDF has more than doubled in size between ASDF 2.26 and

ASDF 3.0.1
I Had already increased manifold since ASDF 1.
I It just does that much more work.
I The ASDF 1 bits have actually been much simpli�ed.

ASDF-BUNDLE was merged into ASDF.

I Fewer headaches for users of ECL

I More features for users of other implementations

I Can create a single fasl per system with fasl-op

I Makes software delivery easier.

I Support for pre-compiled systems.

I SBCL patch to use that for contribs.

PROGRAM-OP

I create standalone executables on supported implementations

I Supported: clisp ccl cmucl ecl lispworks sbcl scl

I See example in test/hello-world-example.asd

I Uses image hooks above.

BUILD-OP

I A generic operation that will do the �right thing� for each
system

I Not super supported yet, but the future(?)

I TODO: generic-load-op, build-op, etc.

FORCE and FORCE-NOT

I Fixed :force to actually work as advertised by ASDF 1.

I Accepts :all, t, or a list of system names

I Also implemented :force-not and based on it
require-system

I Can't force builtin systems (e.g. SB-BSD-SOCKETS)

I WARNING: rpg may revert that FORCE has precedence over
FORCE-NOT

System FOO/BAR/BAZ

I name be recognized by defsystem as located in foo.asd

I Somewhat backward compatible
I in ASDF2, you had to manually ensure foo.asd was loaded

beforehand
I in ASDF3, works automatically

I Allows sensible way to de�ne multiple systems in an .asd �le.

I See iolib.asd

I Internals: grep for function primary-system-name

Deferred warnings

I Don't drop info on yet unde�ned functions

I Supported: allegro ccl cmucl sbcl scl

I Disabled by default.

I Enable it: #+asdf3 (setf asdf::*warnings-file-type*

(asdf::warnings-file-type))

I Dump info for foo.lisp in foo.sbcl-warnings

I Checked at the end of the build on each system

I In a method to PERFORM (COMPILE-OP SYSTEM)

I As if a WITH-COMPILATION-UNIT around each system

TRUENAME resolution

I Now can be reliably turned o�:

I (setf asdf:*resolve-symlinks* nil)

I Useful if TRUENAME is slow or bogus on your OS

I Necessary if using symlinks to content-addressed storage
I e.g. the Google build system

VERSION strings

I Warnings if you don't follow the convention of
VERSION-SATISFIES

I Regex: �[0-9]+(
.[0-9]+)+�

I version-satis�es now uses uiop:version<= for comparison

I No more checking for a same major version number

I Was undocumented behavior since ASDF 1, still in
version-compatible-p

:VERSION spec in DEFSYSTEM

I Now also accept (:read-file-form <path> :at

<formpath>)

I Now also accept (:read-file-line <path> :at

<linenum>)

I :at optional, defaults to 0, 0-based

I <formpath> as per UIOP:ACCESS-AT

I e.g. (:read-file-form "specials.lisp" :at (2 2))

I same as (:read-file-form "specials.lisp" :at (third

third))

I Easier to manage versioning from master location

I See poiu.asd, poiu.lisp

Self-Upgrade

I ASDF 3 will always start by automatically upgrade itself

I Proviso against downgrade, with warning

I Just have the asdf/ tree somewhere in your
source-registry

I Only sane way to deal with potential upgrade

I Otherwise, if any recursive dependency loads ASDF, kaboom

I not algorithmically detectable: .asd �les not declarative

Deprecated COMPONENT-PROPERTY

I also the :PROPERTIES initarg of DEFSYSTEM
I Still works for now
I To be retired before a hypothetical future ASDF 4.

I Used by few, never with any name convention.
I Recommended instead: use DEFCLASS a subclass of

ASDF:SYSTEM

to add new slots and/or initargs. Then use
:defsystem-depends-on and :class in defsystem

I We added :homepage :bug-tracker :mailto :long-name
to defsystem

I The only common metadata used, though never in the same
way

DEFSYSTEM Internals

I Completely refactored. Many renamings after checking
Quicklisp.

I Some sorry features were excised

I OPERATION-DONE-P is simpli�ed and now well-speci�ed

I FIND-COMPONENT will pass component objects through

I a corresponding FIND-OPERATION replaces
MAKE-SUB-OPERATION

Convenience methods

I Added to many exported generic functions:

I input-files output-files component-depends-on

operate . . .

I You can e.g.: (input-files 'compile-op '(system1

"file1"))

I Instead of (input-files (make-instance 'compile-op)

(find-component 'system1 "file1"))

I Makes it much easier to interact with ASDF at the REPL

I Debugging ASDF extensions and modi�cations easier

inline-methods can now be unquali�ed

I Fixes lp#485393

I Great for de�ning test-op methods:
I (defsystem foo/test ... :perform (test-op (o s)

(symbol-call :foo-test :run-tests)))

I NB: Unhappily, this is works in ASDF 3 but is circular in
ASDF2:

I (defsystem foo ... :in-order-to ((test-op

(test-op foo/test))))

:ASDF3 in *features*

I #+asdf3 present since pre-release ASDF 2.27

I Typically used in :depends-on (#-asdf3 :asdf-driver)

I Can protect code not supported in all of ASDF 1, ASDF 2

I No support for ASDF < 2.014.6 (original Quicklisp ASDF)

SLIME support

I Signi�cantly enhanced (Use 2013-02 or later)

I For around-compile hook support, in ~/.swank.lisp add:

I (in-package :swank)

I (pushnew 'try-compile-file-with-asdf

compile-file-for-emacs-hook)

Documentation

I asdf.texinfo only covers the DEFSYSTEM part

I It doesn't cover new operations or internals

I UIOP is only documented in docstrings

I All in all, very limited. But examples abound.

Tests

I Regression test framework massively improved

I Regression-driven, with plenty of new test cases

I Still far cry from covering all desired behavior

I UIOP largely untested

I Automated tests: abcl allegro allegromodern ccl

clisp

I cmucl ecl ecl_bytecodes lispworks sbcl scl xcl

I Manual tests: gcl2.6 genera

lispworks-personal-edition

I Untested on cormancl mkcl rmcl

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

UIOP

I �Utilities for Implementation- and OS- Portability�

I a separately-usable library for Common Lisp runtime support.

I Pathnames, Filesystem, RUN-PROGRAM, compilation, image. . .

I Formerly known as ASDF-DRIVER, formerly ASDF-UTILS

I Includes bits from ASDF, XCVB-DRIVER, TRIVIAL-BACKTRACE,
etc.

I Transcluded in asdf.lisp thanks to
MONOLITHIC-CONCATENATE-SOURCE-OP

I Also more portable alias :asdf-driver for versions before
2.32

I Use it: :depends-on (#-asdf3 :asdf-driver) or if you
insist :depends-on (:uiop)

Portability

I Updates on each and every implementation

I 9 active: abcl allegro ccl clisp cmucl ecl lispworks

sbcl scl

I 6 mostly dead: gcl2.6 genera xcl cormancl rmcl mkcl

I Variants: allegromodern lispworks-personal-edition

ecl_bytecodes

I Festering horror: pathnames.

I Worst: �logical� pathnames.

CL Pathnames: THE HORROR!
I CLHS horribly misdesigned. Countless bugs in ASDF and CL

implementations.
I FAIL: #p�foo/bar� can never be portable (separator OS

dependent)
I Pray your *default-pathname-defaults* isn't �logical�

I FAIL: no sure way to make a non-wildcard pathname
I Pray your �lesystem doesn't contain �les with * in name

I FAIL: even MAKE-PATHNAME isn't portable
I Host, device, :unspecific, wildcard escaping, etc.

I FAIL: even MERGE-PATHNAMES isn't portable
I Host and device defaulting will bite you eventually

I FAIL: No portability across implementations on a same OS
I FAIL: logical pathnames are unusable in practice. Avoid.

I Not portable, ine�cient, not modular, unusable DIRECTORY...
I If you can initialize them portably, you don't need to use them.

I FAIL: Can never be �xed
I implementers each maintain their own backward-compatibility
I users can't portably �x it and hook into OPEN, LOAD, #P, etc.

Semi-solution: UIOP/PATHNAME

I Don't use #P�foo/bar�, have your own string parser

I ASDF uses PARSE-UNIX-NAMESTRING for relative path specs
I So path specs are portable, even when not on Unix,
I as long as you don't use in names any character that is
I a valid separator, wildcard or escape on any platform.

I Do our own pathname type defaulting.

I Use MERGE-PATHNAMES*, MAKE-PATHNAME* instead of CLHS
primitives

I SUBPATHNAME, PARSE-UNIX-NAMESTRING,
PARSE-NATIVE-NAMESTRING

I ENSURE-PATHNAME

I Many more working around CLHS braindeadness

I Supersedes cl-fad

I Still, can't save you from impl-dep wild pathnames

DEFINE-PACKAGE

I In package UIOP/PACKAGE, also exported from UIOP

I A better DEFPACKAGE variant

I Works well for hot upgrade, �xes existing packages

I Has (:mix pkg1 pkg2 pkg3 ...) instead of (:use ...)

I Also has (:reexport pkg1 pkg2 pkg3 ...)

I Also has PACKAGE-DEFINITION-FORM to inspect current
package state

I Still within limitations of CL packages.

UIOP/IMAGE, image lifecycle support

I Included in UOIP

I Must call RESTORE-IMAGE early during program initialization

I Done implicitly by DUMP-IMAGE with :executable t

I Will initialize *COMMAND-LINE-ARGUMENTS* and more

I REGISTER-IMAGE-RESTORE-HOOK,
REGISTER-IMAGE-DUMP-HOOK

RUN-PROGRAM

I replaces the broken old misdesigned RUN-SHELL-COMMAND
I Do NOT use RUN-SHELL-COMMAND
I Misdesign copied from MK-DEFSYSTEM

I RUN-PROGRAM portable to all Windows & Unix CL (not Genera)

I Can sensibly capture output, via SLURP-INPUT-STREAM

I (run-program '("ls" "-l") :output :lines)

I Supersedes XCVB-DRIVER:RUN-PROGRAM/

I Higher-level interface available in system inferior-shell

Conditions control

I Will selectively mu�ed conditions

I Mu�e *UNINTERESTING-COMPILER-CONDITIONS* around
COMPILE-FILE

I Mu�e *UNINTERESTING-LOADER-CONDITIONS* around LOAD

I Mu�e *UNINTERESTING-CONDITIONS* around either

I Empty by default for backward-compatibility by user demand

I Suggested: (setf uiop:*uninteresting-conditions*

(uiop:*usual-uninteresting-conditions*))

I Supersedes code from XCVB-DRIVER, QRes, QPX

COMPILE-FILE*

I On ASDF3, does the Right Thing(tm) on all implementations

I Supports output-translation, deferred-warnings, etc.

I Supports ECL and MKCL linkable object in addition to FASL

I Supports .lib in CLISP, CFASL in SBCL, etc.

UIOP-DEBUG

I load favorite debugging primitives in current package

I Put path to yours in uiop/utility:*uiop-debug-utility*

I See mine in uoip/contrib/debug.lisp

I (DBG :tag expr1 expr2 ... last-expr)

Also in UIOP

I common-lisp: compatibility with obsolete CL implementations

I utilities: plenty of general-purpose utilities

I �lesystem: chdir, directory-files, etc.

I stream: with-safe-io-syntax, format!,
with-temporary-file

I os: getenv, etc.

I con�guration: help with con�guration

Documentation

I UIOP is only documented in docstrings

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

How to implement an extension

I de�ne new component and/or operation subclasses

I de�ne appropriate methods:
I at least component-depends-on, input-files,

output-files, perform

I also operation-description for debugging.

I see cffi/grovel/asdf.lisp

I see cl-protobufs/asdf-support.lisp

Troubleshooting ASDF

I Look at error messages

I Look at the backtrace

I Trace relevant functions
I perform-plan, perform

I input-files, output-files

Often requested: load-only component class

I some kind of CL-SOURCE-FILE for which LOAD-OP means
LOAD-SOURCE-OP

I Beware: defeats executable creation!

I Maybe instead you want run-time evaluation in your Lisp �le:

I (foo '(some data)) or even (eval '(some expression))

Support other languages?

I Can they be loaded in-image?

I Yes: CL becomes a platform (e.g. use cl-python)

I No: second class citizens

Dependency generation?

I asdf-dependency-grovel

Components of type SYSTEM ?

I Yes: that's what ASDF:DEFSYSTEM does!
I use :depends-on (foo)

I No: mk-defsystem idiom, not supported
I do NOT use :components ((:system foo))

Horror .asd �le?

I mcclim.asd before ASDF 3 refactoring

I gbbopen.asd is still pretty complex

I Really, any .asd �le with non defsystem forms.

Outline

Historic Overview of ASDF

How to use ASDF

How to con�gure ASDF

How to de�ne a simple ASDF system

How (not) to map packages and systems

How to use advanced ASDF features

How the ASDF object model works

The bug that launched ASDF 3

ASDF 3: traversing dependencies correctly

ASDF 3's new DEFSYSTEM features

ASDF 3's new portability layer

How to extend ASDF

Conclusions

Future Work?

I More declarative DEFSYSTEM
I Forbid or specially treat .asd �les with forms beside

defsystem

I Keep deferred warnings by default?
I Must �x tens of systems in quicklisp that would fail on SBCL.

I Make further cleanups to the object model?
I Never going to happen: if it's not backward. . .

I Document!

I Move to XCVB, quick-build
I or move to Racket? R7RS?

Lessons Learned

I ASDF design discovered by evolution, not intelligent design
I Big design constraint was interactive development in live image

I It is possible to write code portably in CL, by using UIOP.
I Whether it's a good idea is a di�erent question

I Some things in CL can never be �xed. e.g. pathnames.
I Not even possible to start thinking of better
I namespace management, continuations, type systems, etc.

I The test suite matters a whole lot
I TODO: automate tests with quicklisp and cl-test-grid

ASDF 3 is now available in stores near you

I http://common-lisp.net/project/asdf/

I Download and install in your source registry
I Demand it from your implementation vendors!
I Meanwhile, ASDF 2 ubiquitous at long last.

I ASDF 3 needs new maintainers
I Must remain backward compatible � be gentle with it!

	Historic Overview of ASDF
	How to use ASDF
	How to configure ASDF
	How to define a simple ASDF system
	How (not) to map packages and systems
	How to use advanced ASDF features
	How the ASDF object model works
	The bug that launched ASDF 3
	ASDF 3: traversing dependencies correctly
	ASDF 3's new DEFSYSTEM features
	ASDF 3's new portability layer
	How to extend ASDF
	Conclusions

